Trigonometry Formulas involving Double Angle Identities:
- sin(2x) = 2 sin(x).cos(x)
- cos(2x)=cos2(x)–sin2(x),
- cos(2x)=2cos2(x)−1
- cos(2x)=1–2sin2(x)
- tan(2x)=[2tan(x)][1−tan2(x)]
E.Trigonometry Formulas involving Half Angle Identities:
- sinx2=±√1−cosx2
- cosx2=±√1+cosx2
- tan(x2)=√1−cos(x)1+cos(x)
Also, tan(x2)=√1−cos(x)1+cos(x)=√(1−cos(x))(1−cos(x))(1+cos(x))(1−cos(x))=√(1−cos(x))21−cos2(x)=√(1−cos(x))2sin2(x)=1−cos(x)sin(x)
So, tan(x2)=1−cos(x)sin(x)
No comments:
Post a Comment